Приточно-вытяжные вентиляционные установки с рекуператором воздуха
Почему от вытяжной вентиляции старого типа давно пора отказаться
Как сберечь тепло в доме
Есть ли недостатки у пластинчатых рекуператоров
Процесс можно сравнить с тем, как если бы из морозильной камеры достали бутылку лимонада. Стекло в миг покрылось бы сначала белой пленкой, а затем - каплями воды. Можно ли бороться с проблемой обмерзания рекуператора? Специалисты нашли выход, установив в системах вентиляции с рекуперацией специальный клапан-байпас. Как только пластины покрываются слоем наледи, байпас открывается, и приточный воздух какое-то время идет в обход кассеты рекуператора, поступая в помещение практически без нагрева. При этом, пластины рекуператора довольно быстро размораживаются за счет удаляемого вытяжного воздуха, а образовавшаяся вода собирается в дренажной ванне. Ванна соединена с дренажной системой, выходящей в канализацию, и весь конденсат сливается туда. Рекуператор снова начинает эффективно работать, а воздухообмен восстанавливается.
Когда кассета размораживается, клапан снова закрывается, однако и тут есть одно «но». Когда воздух не поступает в теплообменник, обходит его, экономия энергии сводится к минимуму. Связано это с тем, что приточный воздух, как правило, кроме пластин теплообменника, догревает встроенный калорифер - точно такой же, какой имеется в простых приточных установках, но значительно меньшей мощности. Как с этим справляться? Можно ли бороться с наледью, чтобы не терять деньги?
Приточно-вытяжные вентиляционные установки с рекуперацией тепла
Схема и принцип работы приточно-вытяжной системы вентиляции с рекуператором
Предположим, что на улице зима и температура воздуха за окном -230С. При включении приточно-вытяжной установки, уличный воздух засасывается установкой при помощи встроенного вентилятора, проходит через фильтр и попадает на теплообменную кассету. Проходя через нее, он нагревается до +140С. Как мы видим, в зимние холода, установка не в состоянии полностью прогреть воздух до комнатной температуры, хотя многим, возможно будет достаточно и такого нагрева, поэтому после рекуператора приточный воздух может идти сразу в помещение, или если в рекуператоре стоит так называемый «догрев воздуха» проходя через него, воздух догревается до +200С и только полностью прогретый попадает в помещение. Догреватель это маломощный калорифер электрический или водяной мощностью 1-2 кВт, который может, если в этом есть необходимость, включаться при низких уличных температурах и догревать воздух до комфортной комнатной температуры. В комплектациях рекуператоров различных производителей, как правило, есть возможность выбора водяного или электрического догревателя. Напротив, комнатный воздух с температурой +180С(+200С) засасываясь из помещения встроенным в установку вентилятором, проходя через теплообменную кассету, охлаждается приточным воздухом и выходит на улицу из рекуператора, имея температуру -150С.
Какая температура воздуха будет после рекуператора зимой и летом
Есть довольно простой способ самим посчитать, какой же температуры будет попадать воздух в помещение после рекуператора. На сколько эффективно будет прогреваться приточный воздух и будет-ли он вообще подогреваться? Что будет происходить с воздухом в рекуператоре летом?
Зима
На картинке видно, что уличный воздух равен 00С, эффективность рекуператора равна 77% при этом, температура воздуха попадающего в помещение равна 15,40С. А на сколько прогреется воздух, если температура на улице будет например -200С? Существует формула расчета приточного воздуха для рекуператора в зависимости от его эффективности, температуры воздуха на улице и в помещении:
t(после рекуператора)=(t(внутри помещения)-t(на улице))xK(КПД рекуператора)+t(на улице)
Для нашего примера получается: 15,40С=(200С-00С)х77%+00С Если температура за окном -200С, в помещении +200С, эффективность рекуператора 77%, то температура воздуха после рекуператора составит: t=((20-(-20))х77%-20=10,80С. Но это конечно теоретический расчет, на практике температура будет немного меньше, около +80С.
Лето
t(после рекуператора)=t(на улице)+(t(внутри помещения)-t(на улице))xK(КПД рекуператора)
Для нашего примера получается: 24,20С=350С+(210С-350С)х77%
Схема и принцип работы приточно-вытяжной системы вентиляции с роторным рекуператором
Принцип действия роторного рекуператора основан на обмене теплом между входящим и выходящим потоком воздуха в системе вентиляции через роторный алюминиевый теплообменник, который вращаясь с различной скоростью, позволяет осуществлять такой процесс с различной интенсивностью.
Какой рекуператор лучше
1. Пластинчатый рекуператор с алюминиевым теплообменником.
2. Пластинчатый рекуператор с теплообменником из пластика. Преимущества - те же, что и у предыдущего варианта, однако КПД - выше благодаря свойствам пластмассы.
Рекуператоры для квартир и загородных домов
|
|
|
|
![]() |
Mitsubishi Lossney | Electrolux EPVS |
DAIKIN |
DANTEX | TURKOV Zenit |
От чего зависит цена на рекуператор
Выбирая самостоятельно рекуператор, первым делом обращайте внимание на цену и обещанное качество. Стоит ли устройство заявленной суммы? Или вы просто переплатите за новинку или бренд? Оборудование стоит недешево и окупается несколько лет, поэтому к выбору устройства следует подходить очень ответственно.
Обязательно проверьте наличие сертификатов на продукцию и узнайте, сколько действует гарантийный срок. Обычно гарантия дается не на рекуператор, а на его составные части. Чем лучше качество узлов, агрегатов и прочих комплектующих - тем дороже обойдется покупка. Надежность системы оценивается по сильным и слабым сторонам товара. Естественного, идеального варианта не предлагает никто, но найти наилучшее решение для конкретного помещения - вполне возможно.
Как выбрать приточно-вытяжную установку с рекуператором
1. Какая фирма выпускает продукцию? Что о ней известно? Сколько лет на рынке? Какие ходят отзывы?
2. Какова производительность системы? Эти данные могут рассчитать специалисты, к которым вы обратитесь за консультацией, в том числе и специалисты нашей компании. Для этого вы должны указать точные параметры помещения, желательно предоставить планировку квартиры, офиса, загородного дома, коттеджа и т.д.
3. Каким будет сопротивление системы воздуховодов потокам воздуха после установки конкретной модели? Эти данные также должны рассчитывать проектировщики для каждого отдельного случая. При расчетах учитываются все диффузоры, изгибы воздуховода и многое другое. Модель и мощность рекуператора подбирается с учетом так называемой «рабочей точки» - соотношения расхода воздуха и сопротивления воздуховодов.
4. К какому классу энергопотребления относится рекуператор? Во сколько обойдется содержание системы? Сколько можно экономить электроэнергии? Это нужно знать для того, чтобы просчитать траты на отопительный сезон.
5. Чему равняется заявленный Коэффициент Полезного Действия установки и реальный? КПД рекуператоров зависит от того, какой будет разница температур в помещении и снаружи. Также на этот показатель влияют такие параметры, как: тип теплообменной кассеты, влажность воздуха, компоновка системы в целом, правильность размещения всех узлов и т.д.
Давайте посмотрим, как может рассчитываться КПД для разных типов рекуператоров.
- Если теплообменник пластинчатого рекуператора изготовлен из бумаги, то КПД составит, в среднем, 60-70%. Установка не промерзает, точнее - это случается крайне редко. Если теплообменник нужно разморозить, то система сама снижает на какое-то время производительность установки.
- Пластинчатый алюминиевый теплообменник демонстрирует высокий КПД - до 63%. А вот рекуператор окажется менее производительным. КПД здесь будет равняться 42-45%. Связано это с тем, что теплообменник должен часто оттаивать. Если же вы хотите устранить обмерзание, то придется использовать гораздо больше электроэнергии.
- Роторный рекуператор показывает высокий КПД в том случае, если обороты ротора регулирует «автоматика», руководствуясь показателями температурных датчиков, которые устанавливаются и в помещении, и на улице. Роторные рекуператоры то же подвержены обмерзанию, в результате чего, снижается КПД так же, как и у пластинчатых рекуператоров, сделанных из алюминия.